Unsupervised Projection Models | Awesome Learning to Hash Add your paper to Learning2Hash

Unsupervised Projection Models

Unsupervised Projection Models are models that account for the distribution of the data in an unsupervised manner without the need manually acquired labels. They typically achieve this by using techniques that factorise the data covariance matrix or cluster related data-points into groups. These models generally exhibit a good retrieval effectiveness lying somewhere between the data independent and supervised models, but suffer from the considerable advantage of being computationally expensive at training time due to the matrix factorisation component.
NameArchitectureOptimisation
M. Bawa, T. Condie, P. Ganesan, 2005. LSH Forest: Self-Tuning Indexes for Similarity Search Shallow Random Hyperplanes
, . Shallow Random Permutations
M. Carreira-Perpinan, R. Raziperchikolaei, 2015. Hashing with Binary Autoencoders Deep Backpropagation
L. Chen, H. Esfandiari, G. Fu, V. Mirrokni, 2019. Locality-Sensitive Hashing for f-Divergences: Mutual Information Loss and Beyond Shallow Hellinger approximation
Y. Gong, S. Lazebnik, 2011. Iterative Quantization: A Procrustean Approach to Learning Binary Codes Shallow Variance Balance
Y. Gong, S. Kumar, H. Rowley, S. Lazebnik, 2013. Learning Binary Codes for High-Dimensional Data Using Bilinear Projections Shallow Matrix Factorisation
Casper Hansen, Christian Hansen, Jakob Grue Simonsen, Stephen Alstrup, Christina Lioma, 2020. Unsupervised Semantic Hashing with Pairwise Reconstruction Deep Backpropagation
Xiangyu He, Peisong Wang, Jian Cheng, 2019. K-Nearest Neighbors Hashing Shallow Conditional Entropy Minimisation
J. Heo, Y. Lee, J. He, S. Chang, S. Yoon, 2012. Spherical Hashing Shallow Custom Iterative Scheme
G. Irie, Z. Li, X. Wu, S. Chang, 2014. Locally Linear Hashing for Extracting Non-Linear Manifolds Shallow Alternating Optimisation
P. Jain, S. Vijayanarasimhan, K. Grauman, 2010. Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning Shallow Randomised
Q. Jiang, W. Li, 2015. Scalable Graph Hashing with Feature Transformation Shallow Matrix Factorisation
Z. Jin, Y. Hu, Y. Lin, D. Zhang, S. Lin, D. Cai, X. Li, 2013. Complementary Projection Hashing Shallow Gradient Descent
W. Kong, W. Li, 2012. Isotropic Hashing Shallow Variance Balance
B. Kulis, K. Grauman, 2009. Kernelized Locality-Sensitive Hashing for Scalable Image Search Shallow Matrix Factorisation
B. Kulis, T. Darrell, 2009. Learning to Hash with Binary Reconstructive Embeddings Shallow Coordinate Descent
Cong Leng, Jiaxiang Wu, Jian Cheng, Xi Zhang and Hanqing Lu, 2015. Hashing for Distributed Data Shallow Alternate Optimisation
Ping Li, Trevor J Hastie, Kenneth W. Church, 2006. Very Sparse Random Projections Shallow Randomised
P. Li, 2015. 0-Bit Consistent Weighted Sampling Shallow Random Permutations
Shuyan Li, Zhixiang Chen, Jiwen Lu, Xiu Li, Jie Zhou, 2019. Neighborhood Preserving Hashing for Scalable Video Retrieval Deep Backpropagation
W. Liu, J. Wang, S. Kumar, S. Chang, 2011. Hashing with Graphs Shallow Matrix Factorisation
W. Liu, C. Mu, S. Kumar, S. Chang, 2014. Discrete Graph Hashing Shallow Alternative Maximisation
Song Liu, Shengsheng Qian, Yang Guan, Jiawei Zhan, Long Ying, 2020. Joint-modal Distribution-based Similarity Hashing for Large-scale Unsupervised Deep Cross-modal Retrieval Deep Backpropagation
Jianglin Lu, Zhihui Lai, Hailing Wang, Jie Zhou, 2020. Label Self-Adaption Hashing for Image Retrieval Shallow Augmented Lagrange Multiplier
Q. Lv, W. Josephson, Z. Wang, M. Charikar, K. Li, 2007. Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search Shallow Random Hyperplanes
Lopamudra Mukherjee, Sathya N. Ravi, Vamsi K. Ithapu, Tyler Holmes and Vikas Singh, 2015. An NMF perspective on Binary Hashing Shallow Augmented Lagrangian
B. Neyshabur, R. Salakhutdinov, N. Srebro, 2013. The Power of Asymmetry in Binary Hashing Shallow Random Hyperplanes
M. Norouzi, D. Fleet, 2011. Minimal Loss Hashing Shallow Structured Perceptron
M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, 2016. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks Deep Backpropagation
Kexin Rong, Clara E. Yoon, Karianne J. Bergen, Hashem Elezabi,Peter Bailis, Philip Levis, Gregory C. Beroza, 2018. Locality-Sensitive Hashing for Earthquake Detection: A Case Study of Scaling Data-Driven Science Shallow Random Hyperplanes
R. Salakhutdinov, G. Hinton, 2007. Semantic Hashing Deep Backpropagation
Fumin Shen, Yan Xu, Li Liu, Yang Yang, Zi Huang, Heng Tao Shen, 2018. Unsupervised Deep Hashing with Similarity-Adaptive and Discrete Optimization Deep Backpropagation
A. Shrivastava, P. Li, 2014. Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS). Shallow Random Hyperplanes
Jingkuan Song, Hanwang Zhang, Xiangpeng Li, Lianli Gao, Meng Wang, Richang Hong, 2018. Self-Supervised Video Hashing with Hierarchical Binary Auto-encoder Deep Backpropagation
Shupeng Su, Zhisheng Zhong, Chao Zhang, 2019. Deep Joint-Semantics Reconstructing Hashing for Large-Scale Unsupervised Cross-Modal Retrieval Deep Backpropagation
Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak, Piotr Indyk, Samuel Madden and Pradeep Dubey, 2013. Streaming Similarity Search over one Billion Tweets using Parallel Locality-Sensitive Hashing Shallow Random Hyperplanes
Y. Weiss, A. Torralba, R. Fergus, 2009. Spectral Hashing Shallow Matrix Factorisation (PCA)
Y. Weiss, R. Fergus, A. Torralba, 2012. Multidimensional Spectral Hashing Shallow Matrix Factorisation
I. Torres-Xirau, J. Salvador, E. PĂ©rez-Pellitero, 2014. Fast Approximate Nearest-Neighbor Field by Cascaded Spherical Hashing Shallow Iterative optimisation
B. Xu, J. Bu, Y. Chen, X. He, D. Cai, 2013. Harmonious Hashing Shallow Variance Balance
Jiaming Xu, PengWang, Guanhua Tian, Bo Xu, Jun Zhao, Fangyuan Wang, Hongwei Hao, 2015. Convolutional Neural Networks for Text Hashing Deep Backpropagation
Erkun Yang, Tongliang Liu, Cheng Deng, Wei Liu, Dacheng Tao, 2019. DistillHash: Unsupervised Deep Hashing by Distilling Data Pairs Deep Backpropagation
Fanghua Ye, Jarana Manotumruksa, Emine Yilmaz, 2020. Unsupervised Few-Bits Semantic Hashing with Implicit Topics Modeling Deep Backpropagation
F. Yu, S. Kumar, Y. Gong, S. Chang, 2014. Circulant Binary Embedding Shallow Fast Fourier Transform
Peng-Fei Zhang, Yadan Luo, Zi Huang, Xin-Shun Xu, Jingkuan Song, 2021. High-order nonlocal Hashing for unsupervised cross-modal retrieval Deep Backpropagation