Learning To Prune In Metric And Non-metric Spaces | Awesome Learning to Hash Add your paper to Learning2Hash

Learning To Prune In Metric And Non-metric Spaces

Leonid Boytsov, Bilegsaikhan Naidan. Neural Information Processing Systems 2013

[Paper]    
Independent LSH NEURIPS

Our focus is on approximate nearest neighbor retrieval in metric and non-metric spaces. We employ a VP-tree and explore two simple yet effective learning-to prune approaches: density estimation through sampling and “stretching” of the triangle inequality. Both methods are evaluated using data sets with metric (Euclidean) and non-metric (KL-divergence and Itakura-Saito) distance functions. Conditions on spaces where the VP-tree is applicable are discussed. The VP-tree with a learned pruner is compared against the recently proposed state-of-the-art approaches: the bbtree, the multi-probe locality sensitive hashing (LSH), and permutation methods. Our method was competitive against state-of-the-art methods and, in most cases, was more efficient for the same rank approximation quality.

Similar Work