Building K-anonymous User Cohorts With Consecutive Consistent Weighted Sampling (CCWS)
Zheng Xinyi, Zhao Weijie, Li Xiaoyun, Li Ping. Arxiv 2023
[Paper]
ARXIV
Unsupervised
To retrieve personalized campaigns and creatives while protecting user
privacy, digital advertising is shifting from member-based identity to
cohort-based identity. Under such identity regime, an accurate and efficient
cohort building algorithm is desired to group users with similar
characteristics. In this paper, we propose a scalable -anonymous cohort
building algorithm called {\em consecutive consistent weighted sampling}
(CCWS). The proposed method combines the spirit of the (-powered) consistent
weighted sampling and hierarchical clustering, so that the -anonymity is
ensured by enforcing a lower bound on the size of cohorts. Evaluations on a
LinkedIn dataset consisting of M users and ads campaigns demonstrate that
CCWS achieves substantial improvements over several hashing-based methods
including sign random projections (SignRP), minwise hashing (MinHash), as well
as the vanilla CWS.
Similar Work