Massively-parallel Heat Map Sorting And Applications To Explainable Clustering
Aghamolaei Sepideh, Ghodsi Mohammad. Arxiv 2023
[Paper]
ARXIV
Graph
Unsupervised
Given a set of points labeled with labels, we introduce the heat map
sorting problem as reordering and merging the points and dimensions while
preserving the clusters (labels). A cluster is preserved if it remains
connected, i.e., if it is not split into several clusters and no two clusters
are merged.
We prove the problem is NP-hard and we give a fixed-parameter algorithm with
a constant number of rounds in the massively parallel computation model, where
each machine has a sublinear memory and the total memory of the machines is
linear. We give an approximation algorithm for a NP-hard special case of the
problem. We empirically compare our algorithm with k-means and density-based
clustering (DBSCAN) using a dimensionality reduction via locality-sensitive
hashing on several directed and undirected graphs of email and computer
networks.
Similar Work