[Paper]
ARXIV
Quantisation
Unsupervised
Product quantization-based approaches are effective to encode
high-dimensional data points for approximate nearest neighbor search. The space
is decomposed into a Cartesian product of low-dimensional subspaces, each of
which generates a sub codebook. Data points are encoded as compact binary codes
using these sub codebooks, and the distance between two data points can be
approximated efficiently from their codes by the precomputed lookup tables.
Traditionally, to encode a subvector of a data point in a subspace, only one
sub codeword in the corresponding sub codebook is selected, which may impose
strict restrictions on the search accuracy. In this paper, we propose a novel
approach, named Optimized Cartesian