Hardness Of Approximate Nearest Neighbor Search
Rubinstein Aviad. Arxiv 2018
[Paper]
ARXIV
We prove conditional near-quadratic running time lower bounds for approximate
Bichromatic Closest Pair with Euclidean, Manhattan, Hamming, or edit distance.
Specifically, unless the Strong Exponential Time Hypothesis (SETH) is false,
for every there exists a constant such that computing a
-approximation to the Bichromatic Closest Pair requires
time. In particular, this implies a near-linear query time for
Approximate Nearest Neighbor search with polynomial preprocessing time.
Our reduction uses the Distributed PCP framework of [ARW’17], but obtains
improved efficiency using Algebraic Geometry (AG) codes. Efficient PCPs from AG
codes have been constructed in other settings before [BKKMS’16, BCGRS’17], but
our construction is the first to yield new hardness results.
Similar Work