Hardness Of Approximate Nearest Neighbor Search | Awesome Learning to Hash Add your paper to Learning2Hash

Hardness Of Approximate Nearest Neighbor Search

Aviad Rubinstein . Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing 2018 – 1 citation

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Efficiency Tools & Libraries

We prove conditional near-quadratic running time lower bounds for approximate Bichromatic Closest Pair with Euclidean, Manhattan, Hamming, or edit distance. Specifically, unless the Strong Exponential Time Hypothesis (SETH) is false, for every (\delta>0) there exists a constant (\epsilon>0) such that computing a ((1+\epsilon))-approximation to the Bichromatic Closest Pair requires (n^{2-\delta}) time. In particular, this implies a near-linear query time for Approximate Nearest Neighbor search with polynomial preprocessing time. Our reduction uses the Distributed PCP framework of [ARW’17], but obtains improved efficiency using Algebraic Geometry (AG) codes. Efficient PCPs from AG codes have been constructed in other settings before [BKKMS’16, BCGRS’17], but our construction is the first to yield new hardness results.

Similar Work