Approximate Nearest Neighbors In Limited Space
Indyk Piotr, Wagner Tal. Arxiv 2018
[Paper]
ARXIV
Unsupervised
We consider the -approximate nearest neighbor search problem:
given a set of points in a -dimensional space, build a data
structure that, given any query point , finds a point whose
distance to is at most for an
accuracy parameter . Our main result is a data structure
that occupies only bits of space,
assuming all point coordinates are integers in the range , i.e., the coordinates have bits of precision. This
improves over the best previously known space bound of , obtained via the randomized dimensionality reduction method of
Johnson and Lindenstrauss (1984). We also consider the more general problem of
estimating all distances from a collection of query points to all data points
, and provide almost tight upper and lower bounds for the space complexity
of this problem.
Similar Work