Cascading Hierarchical Networks With Multi-task Balanced Loss For Fine-grained Hashing | Awesome Learning to Hash Add your paper to Learning2Hash

Cascading Hierarchical Networks With Multi-task Balanced Loss For Fine-grained Hashing

Zeng Xianxian, Zheng Yanjun. Arxiv 2023

[Paper] [Code]    
ARXIV Has Code Supervised

With the explosive growth in the number of fine-grained images in the Internet era, it has become a challenging problem to perform fast and efficient retrieval from large-scale fine-grained images. Among the many retrieval methods, hashing methods are widely used due to their high efficiency and small storage space occupation. Fine-grained hashing is more challenging than traditional hashing problems due to the difficulties such as low inter-class variances and high intra-class variances caused by the characteristics of fine-grained images. To improve the retrieval accuracy of fine-grained hashing, we propose a cascaded network to learn compact and highly semantic hash codes, and introduce an attention-guided data augmentation method. We refer to this network as a cascaded hierarchical data augmentation network. We also propose a novel approach to coordinately balance the loss of multi-task learning. We do extensive experiments on some common fine-grained visual classification datasets. The experimental results demonstrate that our proposed method outperforms several state-of-art hashing methods and can effectively improve the accuracy of fine-grained retrieval. The source code is publicly available: https://github.com/kaiba007/FG-CNET.

Similar Work