Chinese Sentences Similarity Via Cross-attention Based Siamese Network | Awesome Learning to Hash Add your paper to Learning2Hash

Chinese Sentences Similarity Via Cross-attention Based Siamese Network

Zhen Wang, Xiangxie Zhang, Yicong Tan . Arxiv 2021 – 4 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Datasets Evaluation

Measuring sentence similarity is a key research area nowadays as it allows machines to better understand human languages. In this paper, we proposed a Cross-Attention Siamese Network (CATsNet) to carry out the task of learning the semantic meanings of Chinese sentences and comparing the similarity between two sentences. This novel model is capable of catching non-local features. Additionally, we also tried to apply the long short-term memory (LSTM) network in the model to improve its performance. The experiments were conducted on the LCQMC dataset and the results showed that our model could achieve a higher accuracy than previous work.

Similar Work