[Paper]
ARXIV
Graph
Independent
LSH
We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for
\textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search
system for ultra-high dimensional datasets on a single machine, that does not
require similarity computations and is tailored for high-performance computing
platforms. By leveraging a LSH style randomized indexing procedure and
combining it with several principled techniques, such as reservoir sampling,
recent advances in one-pass minwise hashing, and count based estimations, we
reduce the computational and parallelization costs of similarity search, while
retaining sound theoretical guarantees.
We evaluate FLASH on several real, high-dimensional datasets from different
domains, including text, malicious URL, click-through prediction, social
networks, etc. Our experiments shed new light on the difficulties associated
with datasets having several million dimensions. Current state-of-the-art
implementations either fail on the presented scale or are orders of magnitude
slower than FLASH. FLASH is capable of computing an approximate k-NN graph,
from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than
10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam
dataset, using brute-force (