Retrievegan: Image Synthesis Via Differentiable Patch Retrieval | Awesome Learning to Hash Add your paper to Learning2Hash

Retrievegan: Image Synthesis Via Differentiable Patch Retrieval

Hung-Yu Tseng, Hsin-Ying Lee, Lu Jiang, Ming-Hsuan Yang, Weilong Yang . Lecture Notes in Computer Science 2020 – 34 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Uncategorized

Image generation from scene description is a cornerstone technique for the controlled generation, which is beneficial to applications such as content creation and image editing. In this work, we aim to synthesize images from scene description with retrieved patches as reference. We propose a differentiable retrieval module. With the differentiable retrieval module, we can (1) make the entire pipeline end-to-end trainable, enabling the learning of better feature embedding for retrieval; (2) encourage the selection of mutually compatible patches with additional objective functions. We conduct extensive quantitative and qualitative experiments to demonstrate that the proposed method can generate realistic and diverse images, where the retrieved patches are reasonable and mutually compatible.

Similar Work