Learning To Rank Words: Optimizing Ranking Metrics For Word Spotting | Awesome Learning to Hash Add your paper to Learning2Hash

Learning To Rank Words: Optimizing Ranking Metrics For Word Spotting

Pau Riba, Adrià Molina, Lluis Gomez, Oriol Ramos-Terrades, Josep Lladós . Lecture Notes in Computer Science 2021 – 0 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Evaluation Tools & Libraries

In this paper, we explore and evaluate the use of ranking-based objective functions for learning simultaneously a word string and a word image encoder. We consider retrieval frameworks in which the user expects a retrieval list ranked according to a defined relevance score. In the context of a word spotting problem, the relevance score has been set according to the string edit distance from the query string. We experimentally demonstrate the competitive performance of the proposed model on query-by-string word spotting for both, handwritten and real scene word images. We also provide the results for query-by-example word spotting, although it is not the main focus of this work.

Similar Work