EAGER: Embedding-assisted Entity Resolution For Knowledge Graphs | Awesome Learning to Hash Add your paper to Learning2Hash

EAGER: Embedding-assisted Entity Resolution For Knowledge Graphs

Daniel Obraczka, Jonathan Schuchart, Erhard Rahm . Arxiv 2021 – 4 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Datasets Evaluation Supervised

Entity Resolution (ER) is a constitutional part for integrating different knowledge graphs in order to identify entities referring to the same real-world object. A promising approach is the use of graph embeddings for ER in order to determine the similarity of entities based on the similarity of their graph neighborhood. The similarity computations for such embeddings translates to calculating the distance between them in the embedding space which is comparatively simple. However, previous work has shown that the use of graph embeddings alone is not sufficient to achieve high ER quality. We therefore propose a more comprehensive ER approach for knowledge graphs called EAGER (Embedding-Assisted Knowledge Graph Entity Resolution) to flexibly utilize both the similarity of graph embeddings and attribute values within a supervised machine learning approach. We evaluate our approach on 23 benchmark datasets with differently sized and structured knowledge graphs and use hypothesis tests to ensure statistical significance of our results. Furthermore we compare our approach with state-of-the-art ER solutions, where our approach yields competitive results for table-oriented ER problems and shallow knowledge graphs but much better results for deeper knowledge graphs.

Similar Work