Terminology-based Text Embedding For Computing Document Similarities On Technical Content | Awesome Learning to Hash Add your paper to Learning2Hash

Terminology-based Text Embedding For Computing Document Similarities On Technical Content

Hamid Mirisaee, Eric Gaussier, Cedric Lagnier, Agnes Guerraz . Arxiv 2019 – 3 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Evaluation

We propose in this paper a new, hybrid document embedding approach in order to address the problem of document similarities with respect to the technical content. To do so, we employ a state-of-the-art graph techniques to first extract the keyphrases (composite keywords) of documents and, then, use them to score the sentences. Using the ranked sentences, we propose two approaches to embed documents and show their performances with respect to two baselines. With domain expert annotations, we illustrate that the proposed methods can find more relevant documents and outperform the baselines up to 27% in terms of NDCG.

Similar Work