Target-oriented Deformation Of Visual-semantic Embedding Space | Awesome Learning to Hash Add your paper to Learning2Hash

Target-oriented Deformation Of Visual-semantic Embedding Space

Takashi Matsubara . Arxiv 2019 – 1 citation

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Datasets Evaluation Multimodal Retrieval

Multimodal embedding is a crucial research topic for cross-modal understanding, data mining, and translation. Many studies have attempted to extract representations from given entities and align them in a shared embedding space. However, because entities in different modalities exhibit different abstraction levels and modality-specific information, it is insufficient to embed related entities close to each other. In this study, we propose the Target-Oriented Deformation Network (TOD-Net), a novel module that continuously deforms the embedding space into a new space under a given condition, thereby adjusting similarities between entities. Unlike methods based on cross-modal attention, TOD-Net is a post-process applied to the embedding space learned by existing embedding systems and improves their performances of retrieval. In particular, when combined with cutting-edge models, TOD-Net gains the state-of-the-art cross-modal retrieval model associated with the MSCOCO dataset. Qualitative analysis reveals that TOD-Net successfully emphasizes entity-specific concepts and retrieves diverse targets via handling higher levels of diversity than existing models.

Similar Work