Enhance Feature Discrimination For Unsupervised Hashing | Awesome Learning to Hash Add your paper to Learning2Hash

Enhance Feature Discrimination For Unsupervised Hashing

Tuan Hoang, Thanh-Toan Do, Dang-Khoa Le Tan, Ngai-Man Cheung . Arxiv 2017 – 0 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Evaluation Hashing Methods Quantization Supervised Unsupervised

We introduce a novel approach to improve unsupervised hashing. Specifically, we propose a very efficient embedding method: Gaussian Mixture Model embedding (Gemb). The proposed method, using Gaussian Mixture Model, embeds feature vector into a low-dimensional vector and, simultaneously, enhances the discriminative property of features before passing them into hashing. Our experiment shows that the proposed method boosts the hashing performance of many state-of-the-art, e.g. Binary Autoencoder (BA) [1], Iterative Quantization (ITQ) [2], in standard evaluation metrics for the three main benchmark datasets.

Similar Work