Deep Triplet Hashing Network For Case-based Medical Image Retrieval | Awesome Learning to Hash Add your paper to Learning2Hash

Deep Triplet Hashing Network For Case-based Medical Image Retrieval

Jiansheng Fang, Huazhu Fu, Jiang Liu . Medical Image Analysis 2021 – 60 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Datasets Evaluation Hashing Methods Image Retrieval Neural Hashing

Deep hashing methods have been shown to be the most efficient approximate nearest neighbor search techniques for large-scale image retrieval. However, existing deep hashing methods have a poor small-sample ranking performance for case-based medical image retrieval. The top-ranked images in the returned query results may be as a different class than the query image. This ranking problem is caused by classification, regions of interest (ROI), and small-sample information loss in the hashing space. To address the ranking problem, we propose an end-to-end framework, called Attention-based Triplet Hashing (ATH) network, to learn low-dimensional hash codes that preserve the classification, ROI, and small-sample information. We embed a spatial-attention module into the network structure of our ATH to focus on ROI information. The spatial-attention module aggregates the spatial information of feature maps by utilizing max-pooling, element-wise maximum, and element-wise mean operations jointly along the channel axis. The triplet cross-entropy loss can help to map the classification information of images and similarity between images into the hash codes. Extensive experiments on two case-based medical datasets demonstrate that our proposed ATH can further improve the retrieval performance compared to the state-of-the-art deep hashing methods and boost the ranking performance for small samples. Compared to the other loss methods, the triplet cross-entropy loss can enhance the classification performance and hash code-discriminability

Similar Work