Carpooling, or sharing a ride with other passengers, holds immense potential
for urban transportation. Ridesharing platforms enable such sharing of rides
using real-time data. Finding ride matches in real-time at urban scale is a
difficult combinatorial optimization task and mostly heuristic approaches are
applied. In this work, we mathematically model the problem as that of finding
near-neighbors and devise a novel efficient spatio-temporal search algorithm
based on the theory of locality sensitive hashing for Maximum Inner Product
Search (MIPS). The proposed algorithm can find