Learning Cross-modal Deep Embeddings For Multi-object Image Retrieval Using Text And Sketch | Awesome Learning to Hash Add your paper to Learning2Hash

Learning Cross-modal Deep Embeddings For Multi-object Image Retrieval Using Text And Sketch

Sounak Dey, Anjan Dutta, Suman K. Ghosh, Ernest Valveny, Josep LladΓ³s, Umapada Pal . 2018 24th International Conference on Pattern Recognition (ICPR) 2018 – 3 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Datasets Image Retrieval

In this work we introduce a cross modal image retrieval system that allows both text and sketch as input modalities for the query. A cross-modal deep network architecture is formulated to jointly model the sketch and text input modalities as well as the the image output modality, learning a common embedding between text and images and between sketches and images. In addition, an attention model is used to selectively focus the attention on the different objects of the image, allowing for retrieval with multiple objects in the query. Experiments show that the proposed method performs the best in both single and multiple object image retrieval in standard datasets.

Similar Work