Deep Convolutional Autoencoder-based Lossy Image Compression | Awesome Learning to Hash Add your paper to Learning2Hash

Deep Convolutional Autoencoder-based Lossy Image Compression

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto . 2018 Picture Coding Symposium (PCS) 2018 – 224 citations

[Paper]   Search on Google Scholar   Search on Semantic Scholar
Efficiency Neural Hashing Quantization

Image compression has been investigated as a fundamental research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and is gradually being used in image compression. In this paper, we present a lossy image compression architecture, which utilizes the advantages of convolutional autoencoder (CAE) to achieve a high coding efficiency. First, we design a novel CAE architecture to replace the conventional transforms and train this CAE using a rate-distortion loss function. Second, to generate a more energy-compact representation, we utilize the principal components analysis (PCA) to rotate the feature maps produced by the CAE, and then apply the quantization and entropy coder to generate the codes. Experimental results demonstrate that our method outperforms traditional image coding algorithms, by achieving a 13.7% BD-rate decrement on the Kodak database images compared to JPEG2000. Besides, our method maintains a moderate complexity similar to JPEG2000.

Similar Work