[Paper]
ARXIV
Image Retrieval
Quantisation
Supervised
Deep hashing enables image retrieval by end-to-end learning of deep representations and hash codes from training data with pairwise similarity information. Subject to the distribution skewness underlying the similarity information, most existing deep hashing methods may underperform for imbalanced data due to misspecified loss functions. This paper presents Deep Priority Hashing (DPH), an end-to-end architecture that generates compact and balanced hash codes in a Bayesian learning framework. The main idea is to reshape the standard cross-entropy loss for similarity-preserving learning such that it down-weighs the loss associated to highly-confident pairs. This idea leads to a novel priority cross-entropy loss, which prioritizes the training on uncertain pairs over confident pairs. Also, we propose another priority quantization loss, which prioritizes hard-to-quantize examples for generation of nearly lossless hash codes. Extensive experiments demonstrate that DPH can generate high-quality hash codes and yield state-of-the-art image retrieval results on three datasets, ImageNet, NUS-WIDE, and MS-COCO.