Tight Lower Bounds For Data-dependent Locality-sensitive Hashing
Andoni Alexandr, Razenshteyn Ilya. Arxiv 2015
[Paper]
ARXIV
Independent
We prove a tight lower bound for the exponent for data-dependent
Locality-Sensitive Hashing schemes, recently used to design efficient solutions
for the -approximate nearest neighbor search. In particular, our lower bound
matches the bound of for the space,
obtained via the recent algorithm from [Andoni-Razenshteyn, STOC’15].
In recent years it emerged that data-dependent hashing is strictly superior
to the classical Locality-Sensitive Hashing, when the hash function is
data-independent. In the latter setting, the best exponent has been already
known: for the space, the tight bound is , with the upper
bound from [Indyk-Motwani, STOC’98] and the matching lower bound from
[O’Donnell-Wu-Zhou, ITCS’11].
We prove that, even if the hashing is data-dependent, it must hold that
. To prove the result, we need to formalize the
exact notion of data-dependent hashing that also captures the complexity of the
hash functions (in addition to their collision properties). Without restricting
such complexity, we would allow for obviously infeasible solutions such as the
Voronoi diagram of a dataset. To preclude such solutions, we require our hash
functions to be succinct. This condition is satisfied by all the known
algorithmic results.
Similar Work