Fast Hashing With Strong Concentration Bounds
Aamand Anders, Knudsen Jakob B. T., Knudsen Mathias B. T., Rasmussen Peter M. R., Thorup Mikkel. Arxiv 2019
[Paper]
ARXIV
Previous work on tabulation hashing by Patrascu and Thorup from STOC’11 on
simple tabulation and from SODA’13 on twisted tabulation offered Chernoff-style
concentration bounds on hash based sums, e.g., the number of balls/keys hashing
to a given bin, but under some quite severe restrictions on the expected values
of these sums. The basic idea in tabulation hashing is to view a key as
consisting of characters, e.g., a 64-bit key as characters of
8-bits. The character domain should be small enough that character
tables of size fit in fast cache. The schemes then use tables
of this size, so the space of tabulation hashing is . However, the
concentration bounds by Patrascu and Thorup only apply if the expected sums are
.
To see the problem, consider the very simple case where we use tabulation
hashing to throw balls into bins and want to analyse the number of
balls in a given bin. With their concentration bounds, we are fine if ,
for then the expected value is . However, if , as when tossing
unbiased coins, the expected value is for large data sets,
e.g., data sets that do not fit in fast cache.
To handle expectations that go beyond the limits of our small space, we need
a much more advanced analysis of simple tabulation, plus a new tabulation
technique that we call tabulation-permutation hashing which is at most
twice as slow as simple tabulation. No other hashing scheme of comparable speed
offers similar Chernoff-style concentration bounds.
Similar Work